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1. INTRODUCTION

In a recent series of papers, the problems of comonotone and copositive
approximation have been investigated [6-8]. The primary focus of the above
work has been to derive estimates for the error of the best constrained
approximation analogous to the Jackson theorems of the standard theory.
In one paper [7], however, it was noted that copositive approximation can
be viewed as a special case of restricted range approximation [9], and from
this existence and uniqueness of best copositive approximation was
established. It remains to develop an alternation theory for this problem
since no alternation theory was developed for the general case considered
in [9].

2. BASIC DEFINITIONS AND NOTATION

Let M be an n-dimensional extended Chebyshev subspace of C[a, b] of
order 3 [3]. LetfE C[a, b] and define Kt C M by

Kt = {p EM: p(x) f(x) )0 0 for all x E [a, bn.
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Each function in Kf is said to be copositive with respect to f If p* E Kf has
the property that

111- p* II = inf III - p II,
pEKf

where II h II = max{1 h(x) I: x E [a, bn, then we say that p* is a best copositive
approximation (from M) to f

Let

LO = {x E [a, b]:j(x) < O},

and

UO = {x E [a, b]:j(x) > O}, U= UO,

where the bar denotes point set closure in the reals. Let S = U n L. If S
contains more than n points, then Kf consists of just the zero function. We
thus assume that S contains m < n points. We will place one additional
restriction on I that will guarantee that Kf consists of more than the zero
function. First note that t E S if and only if jet) = °and I changes sign at t.
We shall say that I changes sign at t E (a, b) provided there exists Tj > °
such that (t, t + Tj] n U = 0 and [t - Tj, t) n L = 0 (or (t, t + Tj] n L = 0
and [t - Tj, t) n U 0), andl does not vanish identically in any open interval
containing t.

We shall say that I changes sign on the interval [c, d], a < c < d < b,
provided t E [c, d] implies jet) = 0, and there exists an E > °such that for
each Tj > 0, Tj :;:;;; E, we have a sgnj(x) ?o 0, x E (c - Tj, c) anda sgnj(x) :;:;;; 0,
X E (d, d + Tj), with strict inequality holding for some x' E (c - Tj, c) and
x" E (d, d + Tj), where a = -lor +1. Thus, for example, I defined on
[-1,1] by

j(x) = -[(x + t) sin(lj(x + t)]2,

=0,
= (x sin(ljx))2,

-I :;:;;; x < -t,
-t:;:;;;x :;:;;;0,
°< x:;:;;; I,

changes sign on the interval [-t, 0], whereas J defined by J(x) = j(x)
for x E [-t, I] and J(x) = -j(x) for x E [-I, -t) does not change sign
on [-t, 0]. If I does not change sign on any interval and S contains <n
points, then we say thatl is admissible. Thus,!defined above is not admissible, 
butJis, since S = 0.

In what follows we shall assume that I is admissible, which guarantees
that Kf consists of nontrivial functions. This fact follows from the theory of
extended Chebyshev systems, since given m < n distinct points in (a, b), we
can find an element q E M such that q has simple zeros at these points and
no other zeros [3, p. 28]. It should be remarked that to just guarantee that
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Kt contains a nontrivial function, it would suffice to assume that the number
of elements in S plus the number of times / changes sign on intervals is
strictly less than n. In this case, however, the alternation theory is much more
difficult. Thus, we shall restrict our attention to the somewhat simpler
case defined above.

Before describing our alternation theorems, it is worth remarking that
these results differ from standard alternation theorems for constrained
approximation (cf. [2, 5, 10], for example), in the sense that here they depend
upon the best approximation. It is necessary, therefore, to spend some time
introducing our results.

For / E C[a, b] ""' M and for fixed p E Kt , X E [a, y ~ is said to be a positive
extreme point for 1- p provided f(x) - p(x) = !II - p II, or x E U ""' S
and p(x) = O. Likewise, x E [a, b] is said to be a negative extreme point
for / - p provided f(x) - p(x) = - III - p II, or x E L ""' Sand p(x) = O.
Let X" denote the set of all positive and negative extreme points for I - p.
Note that Xp is a compact subset of [a, b].

Now define a on X p by a(x) = +1 if x is a positive extreme point and
a(x) = -1 if x is a negative extreme point. a is well defined, since the set of
positive extremals and the set of negative extremals are disjoint.

Next, we define a new type of signlike function, sg(f(x)), for I at each
x E [a, b] as follows. Set sg(f(x)) = 0 if XES and sg(f(x)) = sgn(j(x)) if
f(x) =Ie O. If f(x) = 0 and x ¢ S, then, since we are assuming that/is admis
sible and! =1= 0, there exists p > °such that either (x - p, x + p) n L = 0
and (x - p, x + p) n U 01= 0, or (x - p, x + p) n L 01= 0 and
(x - p, x + p) n U = 0. Since these two possibilities are mutually
exclusive, we may define sg(j(x)) = 1 if the first holds and sg(j(x)) = -1
if the second holds. Observe that sg(j(x)) of:- °for x ¢ S, Y E L '-' S implies
sg(j(x)) = -1, and x E U ""' S implies sg(j(x)) = 1. Also, if x E X p

and sg(f(x)) a(x) = -1, then If(x) I < I p(x) I must hold. Indeed, consider
the case sg(j(x)) = 1, a(x) = -1. Here we must have either f(x) - p(x) =
- Ii/ - P II or x E L ""' Sand p(x) = O. In the first case p(x) = f(x) +
III - p II, so that p(x) > f(x) ~ 0, while in the second case we must also
have sg(j(x)) = -1, violating our assumption. Thus, the second possibility
cannot occur. Likewise, one can establish that 0 ~ f(x) < p(x) when
sg(j(x)) = -1, a(x) = 1.

Let x, y E X p , X < y, (x, y) n X p = 0, and (x, y) n S = {Z'~l' Z'+2 , ... , Zi+v}.

V ~ 0, where v = °implies that (x, y) n S = 0. (Remark: (x, y) denotes
the open interval with endpoints x and y.) Under our assumption that
/ is admissible, we shall say that I - p alternates once between x and
y (or in (x, y)) if a(x) = (_l)v+1 a(y). / - p is said to alternate twice
between x and y if sg(j(x)) a(x) = -1, a(x) = (-l)v a(y), and there
exists at least one Zj E (x, y) n S with p'(Zj) = 0. Note that in this case we
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must also have sg(f(y)) a(y) = -1, If(Y)1 < Ip(y)l. In addition, f - p
is said to alternate once in each of the following two cases:

(i) On (a, y) if y E X p , [a, y) n X p = 0, sg(f(y)) a(y) = -1, and p
has at least v + 1 zeros in [a, y] counting multiplicities up to order 2, where
[a, y] n S = {Zl ,..., zv}.

(ii) On (x, b) if XEXp , (x,b]nXp = 0, sg(f(x))a(x) = -1, and
p has at least v + 1 zeros in [x, b] counting multiplicites up to order 2,
where [x, b] n S = {zm-V+1 ,... , zm}.

Note that if Z E Sand p'(z) = 0, then we must also have that p"(z) = 0,
since MC C2 [a, b] andp changes sign at z.

We say that the set of open intervals {(Xi 'Yim~l is an alternant of length r
for f - p provided Yi ~ Xi+l for i = 1,2,..., f-t - 1, f - p alternates Wi
times on (x;, Yi), where Wi = 1 or 2 as defined above, and L~~l Wi = r.

Finally, we should make a couple of remarks about some of the properties
of the extended Chebyshev subspace, M, of C[a, b], of order 3. First of all,
M C C2[a, b], and p EM is said to have X E [a, b] as a zero of order v, v = 1, 2,
if pljl(X) = 0, °~ j ~ v-I, and pv(x) =1= 0. If x E [a, b] is such that
p(jl(X) = °for j = 0, 1, 2, then we say that x is a zero of order (at least) 3.
Counting zeros of order v, v = 1,2,3, as v zeros, we have that each nonzero
function p E M can have at most n - 1 zeros.

3. MAIN RESULTS

In this section we wish to develop an alternation theory for the
copositive approximation of admissible functions. In what follows, let
S = {Zl , Z2 ,... , zm}, where m < n.

THEOREM 1. Let f E C[a, b] "" M be an admissible function. Then p E Kf

is a best copositive approximation to f if and only if there exists a set of open
intervals {(Xi 'Yi)}i~l which is an alternant of length n - mfor f - p.

Proof( -¢=). Suppose there exists q E Kf for which Ilf - q II < Ilf - p II.
V nder this assumption we shall prove that p - q has at least n zeros, counting
multiplicities up to order 3.

Fix i, i = 1,2,... , f-t, and consider the open interval (Xi, Yi), where
(Xi' Yi) n S = {Zi+1 ,... , Zi+v}, v ;;? 0.

LEMMA 1. (a) .if P(Xi) = q(xt) = °(or p(Yt) = q(y;) = 0), then p - q
has at least v + Wi + 1 zeros in [Xi, Yi]'
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(b) If p(X,) ~ q(Xi)'P(Y;) ~ q(y;) and 11', = J, then p - q has at

least v --1- Wi zeros in (x; , y,).

(c) Ifw, = 2, then p - q has at least v + Wi zeros in (x" y;).

Proof (a) In this case w, must equal 1 and neither p nor q can change
sign at Xi' Therefore, p'(x;) = q'(x;) = 0, so that p - q has at least
v + 2 = v + Wi + 1 zeros in [x, , Yi]'

(b) Let us consider the case where a(xi) = -1 and v is odd. In this
case we must have a(Yi) = -1, P(Xi) > q(x,), and p(y;) > q(Yi)' Now,
if p - q has only Zi+1 ,... , Zi+v as simple zeros, then (p - q)(Xi) > 0 and
v odd imply that (p - q)(Yi) < O. Thus, p - q must have at least one of
Z;-'-l ,,,., z,+v as a zero of order at least two, or another zero in (Xi, Yi) different
from Z,+l ,... , Zi+v' The other cases follow by similar arguments. For the
two special cases where Wi = 1 on [a, Yl] with [a, Yl] n X p = 0 or W; = 1
on [Xl-' , b] with (x" , b] n Xp = 0, the desired result follows from essentially,
the same argument as that given in part (c) to follow.

(c) Since we must have Sg(f(Xi)) a(x,) = sg(j(y;)) a(y;) = -1 in
this case, we have that [f(Xi) - p(x;) I = [f(y;) - p(Yi) [ = ilf - p II, so
that Ip(x;)1 > I q(Xi)! and Ip(y;)1 > [q(y;)[. Let Z) be the first element of
(x, , y;) n S for which p'(z1') = O. Now suppose that p - q vanishes in
(x, , zJ) only at Z;+l , ... , Z1'-l ' and that each of these is a simple zero (set is
empty if j = i + 1). Then, by considering two cases (0 > f(x) > p(x)
and q(x) > p(x), or 0 ~ f(x) < p(x) and q(x) < p(x»), we have that
ip(t)1 > i q(t)i must hold in some interval of the form (Zj - p, z), p > O.
Since p, q E C2 [a, b], this implies that q'(z)) = 0. However, since both p
and q change sign at Z1' , we must also have that p"(z1') = q"(Zl) = O. Thus,
p - q has Zj as a zero of order at least 3 and our desired result follows.

Thus, assume that p - q has precisely one additional zero in [x;. z;).
That is, p - q either has one simple zero in [x, , Zj) '"'-' {z;+1 ,... , Zj_l} or has
one of Z'+l , ... , Z1'-l as a double zero. This implies that the inequality
[ q(x)1 > ! p(x) [ holds for all x E (Zj - E, zJ, for some E > O.

Now, if p - q has only Z1'+1 , ..., Zi+v as simple zeros in (Zj , y;] and has no
other zeros, then we must have that [ q(Y,)i > :p(y;)I. But this would be
a contradiction. Hence, p - q must have an additional zero in (Zj, Yd,
provingthatp - qhas at least v + 11'; zeros in (Xi ,y,). The proof of Lemma 1
is complete.

We now count the total number of zeros of p - q on [a, b]. Assume that
there are 'Y) elements ofS in the interior of the intervals of type (a) in Lemma 1,
o elements of S in the interior of the intervals of types (b) and (c), and
Tn - 0 - 'Y) elements of S in the rest of [a, b]. It is now easy to observe that
p - q has at least
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(i) YJ + L(a) Wi zeros in the union of intervals of type (a);

(ii) 0 + I:(b),(c) Wi zeros in the union of intervals of types (b) and (c);

(iii) m - 0 - YJ zeros on the rest of [a, b].

Thus, p - q has at least Y) + 0 + m - 0 - YJ + L~=l W, = n zeros on
[a, b]. Hence p = q, and the proof of this part of the theorem is complete.

( =;. ) Suppose f ¢ M and p E Kf is a best copositive approximation to f
Assume that {(Xi , Yi)}~=l is an alternant forf - p with I:~~l Wi = k < n - m,
where k is maximal. We will construct a new function r E Kf , for which
Ilf - r II < Ilf - p [I, thus contradicting our assumption that k < n - m.
In what follows we shall assume that S oF 0, since for S = 0, this problem
reduces to a special case of restricted range approximation, [10], for which
the desired alternation is known to hold.

The assumption that k is maximal is easily seen to require that for each
i = 1,2,... , /-'v - 1, there are no alternations in [Yi, Xi+l]' Specifically, for
each X E (Yi, Xi+l] n Xl' with [Y;, x] n S = {Zi+l ,..., Zi+v}, v ~ 0, we must
have that a(y;) = (-I)v a(x). Furthermore, if there exists Zj E [Yi, x] n S
with p'(Zj) = 0, then we must also have that Ip(y,)[ ~ I f( Yi)1 and
[p(x)1 ~ I f(x)l. Also, if Xl > a, then for each x E [a, Xl) n Xl' with
[x, Xl] n S = {ZHI ,... , Zi+v}, we must have a(xl) = (-1)v a(x). Also, if
there exists Zj E [x, Xl] n S with p'(Zj) = 0, then we must have [p(xl)1 ~
If(xl)1 and Ip(X) [ ~ If(x)!. Finally, for this case we must also have that,
if there exists z, E [a, Xl] n S with p'(Zj) = 0, then Ip(xl)! ~ If(Xl)l. Like
wise, if Yll < b, then similar statements are true for the interval [YIl' b].

We begin the proof with the construction of a set of k + m distinct points
in (a, b) and a function q E M. Consider the interval (Xi' Yi), for i = 1,... , /-'v.
If Wi = 1, define a point 5i E (Xi, Yi) as follows. First consider the case where
(x; , Yi) n S = 0. If pet) oF °for all t E (Xi, Yi), set 5i = (Xi + Yi)j2. If
pet) = °for some t E (Xi, Yi), then set t/ = min{t E (Xi, Yi): p(t) = o} and
t;' = max{t E (Xi' y,): pet) = O}. Now, if Xi E Xl' and sg(f(x,)) a(xi) = 1,
set 5; = (t;' + x;)j2, and if Xi E Xl' and Sg(j(Xi)) a(x,) = -1, set
5i = (t.' + y;)/2. If Xi ¢ Xl' (i.e., i = 1, WI = 1, Xl = a with [a, YI) n Xl' = 0,
Sg(j(YI)) aCYl) = -1, and p has at least v + 1 zeros in [a, yrl counting
multiplicities up to order 2, where [a, yrl n S = {Zl ,... , zv}), define ( as
before and set 51 = (t; + Yl)j2. Next, consider the case that (x; ,Yi) n S =
{Zi+l ,... , z;+v}. Define t/ and t; as before, and note that t/ ~ Zi+l and
t;' ~ Zi+v' Now, if Sg(j(Xi)) a(xi) = 1, set 5i = (t; + y,)j2, whereas,
if Sg(f(Xi)) a(xi) = -1, set 5i = (t/ + xi)j2. Observe that in the case
where If(x;) I < Ip(X;) I and there exists Zj E (Xi, Yi) n S with p'(zJ) = 0,
we must have that Ifey;)! > Ip(Y;)I, since w, = 1. Finally, consider the
case where w, = 2. In this case we must have that (Xi' y,) n S = {Zi+l ,... , Zi+v},
v ~ 1, with p'(Zj) = °for at least one Zj, i + 1 ~j ~ i + v, [f(xi)1 <
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Ip(x,)I, and If(Yi)1 < Ip(y,):. Define t/, t;' as before and set s/ = (t,' + x,)/2
and Si = (t;' +Yi)/2.

Let T denote the set of all the points constructed above, and set Z = T u S.
Note that Z consists of precisely k + m < n distinct points. Since M is an
extended Chebyshev system of order 3, it follows that there exists q E M,
such that q has each point of Z as a simple zero and q vanishes only at these
points [3]. We shall show that there exists E > 0, such that r. = p + Eq
is copositive with! and II! - r.!1 < II! - p II, where q satisfies the require
ment that sgn q(Yl) = aCYl).

Let us first show that sgn q(y,) = a(y;) and sgn q(Xi) = a(x;) for i = 1,... , fL,
provided Xl E Xv and Y" E Xv' (That is, for the special case when Xl = a,
[a, Yl) n Xv = 0, with WI = 1, we do not necessarily have that
a(a) = sgn q(a). Likewise, for the special case when Y" = band
(x", b] n X p = 0). Indeed, suppose Xl E X p and (Xl' Yl) n S = {Zi+1 ,... , ZwJ,
v ~ O. Now. if Wi = 1, then a(xl) = (_1)v+1 aCYl) and, in this case, q
has simple zeros at Sl' Zi+1 ,... , Zi+v and only at these points in [Xl. Yl]'
Thus, sgn q(Xl) = (-1)v+1 sgn q(Yl), so that sgn q(x1) = a(x1), as desired.
If WI = 2, then a(xl) = ( -1)v a(Yl) and sgn q(x1) = (-1 )v+2 sgn q(Yl),
since q has simple zeros at Sl" Zi+1 ,... , Z,+v , Sl in [Xl' Yl], once again estab
lishing the desired result. Now consider q(x2). Let (Yl, x 2) n S =
{Zi-;-l ,... , Zi+v}, v ~ 0. Then, since k is maximal, we must have that a(x2) =
(-I)v a(Yl). From this the desired result immediately follows, since q has
only Zi+1 ,... , ZHv as simple zeros in LVI, x 2]. Now one can show that
a(x2) = sgn q(X2) implies a(Y2) = sgn q(Y2) with the same argument used
in the (Xl' Yl) case, and the remaining cases follow immediately.

Now let us consider the interval [Yi' Xi+1] for fixed i, i = 1,... , J-t - 1.
We shall first show that there exists EO > °such that for each E, 0 < E :S;: EO,

maxxe[y '" ] I f(x) - rix) [ < [I! - p II· Indeed, since sgn q(Yi) = a(Yi) and
i' t+l

f - p does not alternate on [y" Xi+1]' we must have that for each
X E [Yi , Xi+l] n Xv , a(x) = sgn q(x). Thus, if [Yi , Xi+l] n S = {Zi+l , ... , Zi+,}

and we set to = Yi, t j = Zi+;, j = 1,... , v, tV+1 = X"l' then for any
t E [t;, tm ]we have that a(Yi)( -1); q(t) ~ 0, and, for any X E [t j , tj+1] n Xv ,
a(x) = (-1)' a(Yi)' Without loss of generality, assume a(x) = -1. Then,
for all t E (t, , tm ], we must have that f(t) - pet) < [If - p [I, since k is
maximal. Also, for E > 0, we have for t E [t; ,tj+l] that f(t) - rit) =

jet) - pet) - Eq(t) > jet) - pet) ~ - II! - p il. Thus, from continuity and
compactness considerations, there exists an E; > 0 such that for each E,

o < E :S;: Ej, we have maxte[t t. ] Ij(t) - rit)1 < [I! - p II. Repeating
" j+l

this argument for each of these subintervals and letting EO = min E, , we have
our desired result on [Yi , X'+l].

Next, we must show that there exists El > 0 such that for each E,

o < E :S;: EI , '. is copositive with! on [y" Xi~l]' Note that both j and q
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change sign in [Yi' Xi+1] at the points of [Yi, Xi+1] n S. Thus, either q
or -q is copositive with f on [Yi' Xi+1]' (Actually, iff = 0 on [Yi' xiHl,
then both are copositive withf on [Yi' Xi+1].) Let us first consider the case
where there exists Zj E [Yi , Xi+l] n S with p'(Zj) = O. Since k is maximal,
we have that Ip(Yi)1 :'( If(Yi)l. We claim that in this case f is copositive
with q. Indeed, suppose a(Yi) = -1; then either f(Yi) - P(Yi) =
-Ilf - P II or P(Yi) = 0 and Yi E L. If the latter case occurs, then clearly
f and q are copositive as sgn q(Yi) = -1. Thus, suppose f(Yi) - P(Yi) =
-Ilf - P II. Then P(Yi) = Ilf - P II + f(Yi) > f(Yi)' Since we must also
have Ip(Yi)1 :'( I f(Yi)l, it follows that f(Yi) < 0, and our desired result
follows. The case where a(Yi) = +1 is proved in the same manner. Thus, in
this case r. and fare copositive on [Yi , Xi+1] for any E > O. Finally, let us
consider the case where [Yi' Xi+1[ n S = {Zi+l ,... , Zi+v}, v ? 0, and for which
p'(Zj) =1= 0 for each Zj in the above intersection. Furthermore, let us assume
thatfand q are not copositive on [Yi' Xi+l]' so thatfand -q are copositive.
Now suppose that x E (L U U) n UYi, Xi+1] "-' S). Then we claim that
p(x) =1= O. Indeed, suppose x E L n ([Yi , Xi+1] "-' S) and p(x) = O. Then
x E X p and a(x) = -1. Also, x E L "-' S implies that q(x) > 0, since -q
is copositive withf But this contradicts the fact that a(x) = sgn q(x) for all
x E [Yi' Xi+1] n X p • Thus, we have that P and q both vanish at only the
points of S in r = [Yi' Xi+1] n (L U U) and that they both change sign at
these points. Also, sgnp(x) = -sgn q(x) for each x E r. Now, at each
Zj Ern S we have that p'(Zj) =1= O. Thus, there exists OJ :'( t min{zi+1 - Zi :
i = 1,... , m}, OJ > 0, such that p'(x) =1= 0 in I j = [Zj - OJ , Zj + OJ]. Since
p(x) = p'(tx)(x - Zj) and q(x) = q'(ox)(x - Zj) for each x E I j , where tx
and Ox are between x and Zj, we can select Ej > 0 such that 0 < E :'( Ej

implies that Ip(x)I ? E Iq(x)I for all x E I j . Repeat this argument for each
Zj Ern Sand E' = min Ej . Then r,,-, (Uj (Zj - OJ, Zj + OJ)) is a compact
(possibly empty) subset of [a, b] and p(x) =1= 0 for each x in this subset.
Thus, we can find EI > 0, EI :'( EO, such that 0 < E :;:;;; EI implies that
Ip(x)I ? E Iq(x)I on this set. Thus, we have for 0 < E :;:;;; EI that r. is coposi
tive withp on [Yi , Xi+l] n (L U U), and hence copositive withfon [Yi , Xi+l]'

Next, we wish to consider an interval of the form [Xi, Yi], i fixed, i = 1, ... , (1-.

First of all, select °> 0 such that q does not vanish on r l = [Xi, Xi + 0] U

[Yi - 0, Yi). Then, since f - p does not alternate on either [Xi, Xi + 0] or
[Yi - 0, Yi], a(Yi) = sgn q(y;) and a(xi) = sgn q(Xi), we can find E2 > 0
such that 0 < E :;:;;; E2 implies maxXeT [f(x) - r.(x) I < Ilf - p II, by precisely

1

the same continuity and compactness arguments given earlier. Also, since
(Xi, Yi) n X p = 0, we have that If(x) - p(x)1 < Ilf - p II for all
x E [Xi + 0, Yi - 0]. Thus, there exist Ei > 0, Ei < E2 , such that 0 < E :'( Ei

implies maxxe[x,+8.vcoJ If(x) - r.(x) I < Ilf - p II. Note that this is also
true if Xl = a and [a, YI) n X p = 0, or Y" = b and (x"' b] n X p = 0.
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Thus, all that remains is to prove that for E > 0 sufficiently small, r. is
copositive with f on [Xi' y.]. Let us first note that if Wi = 1 and
Sg(f(Xi)) a(xi) = 1, then Sg(f(Xi)) sgnq(xD = 1, so thatfand q are coposi
tive in [Xi, Si] (where s, > Zj for each Zj E [Xi' yJ n S), implying that r.
and fare copositive in [Xi, s;) for any E > O. Now consider the interval
(Si' y;]. By our construction, p does not vanish in [s" y;). Also, from
a(xi) = (-1)v+1 a(Yi) (v = 0 if [Xi, yJ n S = 0) and Sg(f(Xi)) =

(-l)v Sg(f(Yi))' we have that Sg(f(Yi) a(yJ = -1. Hence I P(Yi)! >
! f(Yi)l, implying P(Yi) oF O. Now either f vanishes identically in [Si'
so that r. and fare copositive in [Si ,y;] for any choice of E > 0, or there
exists t E (Si' yz) such thatf(t) oF O. Since P has no zeros in [Si' y;] by con
struction, we must have that p(t)f(t) > 0 holds, and hence we can choose
0:0 > 0 such that for any E, 0 < E < 0:0' r. andfwill be copositive in [Si , y;]

(e.g., let 0:0 = t(miniE[s"y) Ip(t)!/:maxte[s"v,J ! q(t)!), so that sgn rix) =
sgn p(x) in [s, , y,D.

Similarly, if Wi = 1 and sg(f(xi)) a(xi) = -1, we have that Si < Zj
for all z, E [Xi, Yi] n S, and f and q are copositive in (Si, Yi]' Since
If(Xi)! < IP(Xi)! must hold, we can show as above thatf and r. are coposi
tive on [x, , s,] for sufficiently small positive E.

Finally, the same argument can be given for the case that Xl = a.
[a, Yl) n X p = 0, Sg(f(Y1)) a( Y1) = -1 and P has at least v + 1 zeros
in [a, y!l counting multiplicites up to order 2, where [a. Yl] n S = {Zl ,... , zv},
to show that r. andfare copositive on [a, Yl] for E > 0 and sufficiently smalL

Thus, for the remainder of the proof, we shall assume that Wi = 2. In
this case there exists Zj E [Xi' Yi] n S with p'(Zj) = 0 and we have that q
yanishes at s/ < Zi+1 < .. ' < Zi+v < Si and only at these points in [x, ,
where we have assumed that [Xi, y;] n S = {Zi+1 " .. , ZHv}. Now, in this
case we must have Sg(f(Xi)) a(xi) = sg(f(y;)) a(y,) = -1. Since
sgn(q(x;)) = a(x,) and sgn(q(Yi» = a(y,) we have thatf and q are copositive
on [s/, s;]. For the intervals [Xi, s/] and [St , )!i) we have that P is never zero
by construction, since If(xt)! < [p(xi)1 and If(Y,): < [p(Yt):. Thus, as
before, for E > 0 sufficiently small, f and r. are copositive on these intervals
sincefand pare copositive there, and, hence, r. is copositive withfon [Xi, y,J.

Finally, let us consider the cases where Xl > a or y" < b. Without loss
of generality we shall consider the case where Xl > a. By the argument given
in the [Yi, x/ H ] case, it follows that max{1 f(x) - rix)!: X E [a, Xl]} <
Ilf - p i~, for E > 0 sufficiently small. We will now show that there exists
(Xl > 0 such that for 0 < E ~ (Xl' r. is copositive with f on [a, xd. First
of all, if sg(f(x1») a(x1) = -1, then p can have only simple zeros at
{Zl "." z.} = [a, xd n S and no other zeros, since k is maximaL In this case,
by resorting to local Taylor expansions of order 1 about each ZJ E [a, Xl) n S,
we can show that r. is copositive withfon [a, Xl} fo!' E > 0 sufficiently small.
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This approach is necessary since, in this case, f and -q are copositive on
[a, Xl], so that we must use the fact that p has no additional zeros (including
multiplicities) to establish this case. On the other hand, if sg(f(xl » a(xl ) = 1,
then q andfare copositive on [a, Xl], so that f and r. are copositive for any
€ > O. A similar argument applies to the interval [y" , b]. From this it follows
that r. is copositive withf on [a, Xl] and [y" , b].

Combining all these cases, it follows that there exists € > 0 for which
r. is copositive withf on [a, b] and Ilf - r.11 < Ilf - p II. This is the desired
contradiction and the proof of the theorem is complete.

If P'(Zi) =1= 0, i = 1,..., m, then a simpler characterization theorem exists.
Let N = {q E M: q(Zi) = O}, and note that N is an (n - m)-dimensional
subspace of M.

THEOREM 2. Suppose fE C[a, b] ,-...; M is admissible and p E Kf • Let
S = {Zl ,..., zm} and suppose that P'(Zi) =1= 0, i = 1,... , m. Then the following
are equivalent:

(a) p is a best copositive approximation to f
(b) The zero element (0, ..., 0) is in the convex hull of the set of(n - m)

tuples {a(x) x: X E X p }, where x = (1)l(X),,,,, 1>n-m(x», with 1>1'"'' 1>n-m any
basis for N.

(c) There exist n - m + 1points in X p , Xl < X2 < ... < Xn-m+l , such
that a(xi) 7T(Xi) = (_l)i+l a(xl) 7T(Xl), where 7T(Xi) = sgn n:':l (Xi - Zj).

Proof (a) => (b). Let

X+l = {x E [a, b]:f(x) - p(x) = Ilf - p II},
X-I = {X E [a, b]:f(x) - p(x) = -Ilf - p II},
X+2 = {x E [a, b]: p(x) = 0, f(x) > O},

X-2 = {x E [a, b]: p(x) = O,j(x) < O},

The proof of this part is similar to the proof of the same part of Theorem 1
in [11], and will be omitted. Also, the proof of (b) => (c) is similar to the
proof of Theorem 3.1 in [5].

(c) => (a). We will show that f - p alternates once on each of the
intervals (Xi, Xi+l)' i = 1,2,..., n - m, so that, by Theorem 1, p is a best
copositive approximation to f

Let [Xi' Xi+l] n S = {Zi+l ,... , Zi+v}, Vi ~ O. Note that 7T(Xi)!7T(Xz+l) =

(-1)vi • Thus, from (c), a(x2) = ~a(xl) 7T(Xl)!7T(X2) = (-1)"1+1 a(Xl)' so
thatf - p alternates once on (Xl' X2)' Similarly, a(x3) = a(xl) 7T(Xl)/7T(X3) =

a(xl)(7T(Xl)!7T(X2»(7T(X2)!7T(X3» = -a(x2) 7T(X2)!7T(X3) = (_1)v2+1 a(x2). Thus,
f - p alternates once on (x2 , x 3). Continuing in this fashion, we see that
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f - p alternates once on each of the intervals (Xi' Xii-I), i = 1,... , n - Ill,

so that {(Xi, xi+!)}f;t forms an alternant of length n - m. Hence, p is a best
copositive approximation to f

Remark. It is worth noting that the alternation result in part (c) of
Theorem 2 is of a hybrid nature. That is, it contains elements of the
alternation theorems for restricted range approximation and approximation
with interpolatory constraints. The former enters in the sense that points
in X+2 and X_ 2 are counted as extreme points, while the latter behavior is
exhibited by the fact that the points where f changes sign act as nodes of
interpolation. See [2, 5, 10] and remarks in [4, p. 212] for a comparison of
the theorems and an elaboration of these points.

Let us now consider this problem for the case that the underlying space
is a finite subset of [a, b]. Thus, let X C [a, b] be a finite set of points with
card X )0 n + 1. Further, let M be an n-dimensional Chebyshev subspace
of C[a, b]. Fix fE C(X) and define Kt by Kt = {p EM: p(x)f(x) ;:>- 0 for
all X E X}. In order to have a nontrivial problem we must restrict the behavior
of f Thus, let X = {Xi}f=l, where Xi < Xi+! for all i. We shall say that I
changes sign at x, E X, i = 1, ... , N - 1, if there exists v > 0, i --T- v ~
such that !(Xi)f(X,+v) < 0 and f(Xi+1) = ... = !(Xi+V-I) = O. (Note that
if v = 1 then the second condition is not required.) In what follows, we shall
requirefto have no more than n - 1 sign changes. Define the sets U and L by

U = {xEX:f(x) > O}

and

L = {x E X:f(x) < O}.

Note that U ('\ L = 0, L u U U {X E X: f(x) = O} = X. Set Kf = {p E M:
p(x) )0 0 for all X E U and p(x) :;:;; 0 for all X E L}. Then this is a special case
of restricted range approximation, for which a complete theory is known,
including an alternation theorem [10]. Indeed, as before, we shall call X E X
a positive extreme point for f - p whenever f(x) - p(x) = ill - p ilx
or X E U and p(x) = 0(11 . Ilx denotes the uniform norm on C(X». Similarly,
x E X is a negative extreme point whenever f(x) - p(x) = - ilf - p Ilx or
x ELand p(x) = O. Set X p equal to the union of all positive and negative
extreme points. Then the alternation theorem is given. by the neAt result,
which follows from [10].

THEOREM 3. P E Kt is a best copositive approximation to I if and only if
there exist n + 1 points in X p , YI < Y2 < ... < Yn-I, for which
a(y;) = (-1)'+1 a()-\), where a(Yi) = +1 if Yi is a positive extremal and
a(y;) = -1 if)'; is a negative extremal.
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Remark. Alternation theorems for approximation with various types of
constraints have recently been obtained in [12, 13].
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